Data Management at NERSC

NUG Training August 11, 2015

Where Do I Put My Data?

Overview of NERSC file systems

- Local vs. Global
- Permanent vs. Purged
- Personal vs. Shared

HPSS Archive System

What is it and how to use it

NERSC File Systems

The compute and storage systems 2015

Protect Your Data!

- Some file systems are backed up
- Some file systems are not backed up
- Restoration of individual files/directories may not be possible
- Hardware failures and human errors will happen

BACK UP YOUR FILES TO HPSS!

Global File Systems

- NERSC Global Filesystem (NGF)
 - Based on IBM's General Parallel File System (GPFS)
- Accessible on all NERSC systems
- Provides directories for home and project
- Shared by ~6000 active NERSC users
 - Inefficient use effects others

Global Homes File System Overview

- Provided by two ~100 TB file systems
 - 5 GB/s aggregate bandwidth
- Access with \$HOME, ~/<file_in_home_dir>
- Other name/global/homes/1/lgerhard
- Low-level name

```
/global/u1/l/lgerhard
/global/u2/l/lgerhard -> /global/u1/l/lgerhard
```


Global Homes Use

Shared across all platforms

- Dot files that control user environment
- \$HOME/edison, \$HOME/hopper, etc.
- Visible only to you by default

Tuned for small file access

- Compiling/linking
- Configuration files
- Do not send batch job output to \$HOME!

Global Homes Policies

Quotas enforced

- 40 GB
- 1,000,000 inodes (i.e. files and directories)
- Quota increases rarely (i.e., never) granted
- Monitor with myquota command

"Permanent" storage

- No purging
- Backed up (can retrieve files on your own with snapshots)
- Hardware failures and human errors will happen

BACK UP YOUR FILES TO HPSS!

Project File System Overview

- Provides 5.1 PB high-performance disk
 - 50 GB/s aggregate bandwidth
- Available on all NERSC systems
- Intended for sharing data between platforms, users, or with the outside world
- Beginning this year every MPP repo gets a project directory

/project/projectdirs/m9999

Project Use

Tuned for large streaming file access

- Sharing data within a project or externally
- Running I/O intensive batch jobs
- Data analysis/visualization

Access controlled by Unix file groups

- Visible, writable by whole group by default
- Group name usually same as directory
- Requires administrator (usually the PI or PI Proxy)
- Can also use access control list (ACL)

Project Policies

Quotas enforced

- 1 TB
- 1,000,000 inodes
- Quota increases may be requested
- Monitor with **prjquota** command % **prjquota** bigsci

Permanent storage

- No purging
- Backed up if quota <= 5 TB
- Hardware failures and human errors will happen

BACK UP YOUR FILES TO HPSS!

Global Scratch File System Overview

- Provides 4 PB high-performance disk
 - 80 GB/s aggregate bandwidth
- Access with \$GSCRATCH
- Quotas enforced
 - 20 TB, 4,000,000 inodes
 - Quota increases may be requested
 - Monitor with myquota command
- Temporary storage
 - Bi-weekly purges of all files that have not been accessed in over
 weeks
- Retiring September 30th, to be replaced with a Lustre scratch file system

Local File Systems on Cray Machines

- Edison and Hopper have local scratch
- Edison has two scratch file systems
 - Users randomly assigned
 - Each has 2.1 PB (1 PB on Hopper)
 - Each has 48 GB/s aggregate bandwidth (35 GB/s Hopper)
- Edison has extra high-performance scratch (scratch3)
 - 3.2 PB, 72 GB/s aggregate bandwidth
- Provided by Cray, based on Lustre
- Generally, IO access for batch jobs on Hopper and Edison will be fastest for local scratch

Edison Scratch Use

- Each user gets a scratch directory in /scratch1 or /scratch2 (Hopper: /scratch or /scratch2) /scratch2/scratchdirs/dpturner
 - Best name: \$SCRATCH
 - Visible only to you by default
- Access to /scratch3 must be requested
 - Large datasets
 - High bandwidth
- Tuned for large streaming file access
 - Running I/O intensive batch jobs
 - Data analysis/visualization

Edison Scratch Policies

Quotas enforced in \$SCRATCH by submit filter

- 10 TB (5 TB Hopper)
- 10,000,000 inodes (5M inodes Hopper)
- Quota increases may be requested
- Monitor with myquota command
- No quota enforcement in /scratch3

Temporary storage

- Daily purges of all files that have not been accessed in over 12 weeks (8 weeks on scratch3)
 - List of purged files in \$SCRATCH/.purged.<timestamp>
- Hardware failures and human errors will happen

BACK UP YOUR FILES TO HPSS!

Long-Term File Systems

Global home directories (\$HOME)

- Source/object/executable files, batch scripts, input files, configuration files, batch job summaries (not for running jobs)
- Backed up
- 40 GB permanent quota

Global project directories

- Sharing data between people and/or systems, short term data storage
- Backed up if quota less than or equal to 5 TB
- All MPP repos have one, 1 TB default quota

Short-Term File Systems

Local scratch directories

- Cray (Edison, Hopper) only
- Large, high-performance parallel Lustre file system
- Not backed up; files purged after 12 weeks
- Hopper: 5 TB default quota; Edison: 10 TB default quota
- \$SCRATCH, \$SCRATCH2

Global scratch directories (replacement coming at the end of the year)

- All systems
- Large, high-performance parallel file system
- Not backed up; files purged

Where Do I Put My Data?

Local Scratch

Fastest IO
Only visible on one
machine
Only visible to you
Purged

Project

Medium IO
Visible on all machines
Visible to all group
members
Never purged
External sharing

Global Scratch

Fast IO
Visible on all machines
Only visible to you
Purged

Home

Source code, config. files Only visible to you No batch output

File Systems Summary

File System	Path	Туре	Default Quota	Backups	Purge Policy
Global Homes	\$HOME	GPFS	40 GB / 1M inodes	Yes	Not purged
Global Scratch Retiring Sep	\$GSCRATCH tember 30th	GPFS	20 TB / 4M inodes	No	12 weeks from last access
Global Project	/project/projec tdirs/projectna me	GPFS	1 TB / 1M inodes	Yes, if quota less than or equal to 5TB	Not purged
Hopper Scratch	\$SCRATCH and \$SCRATCH2	Lustre	5 TB / 5M inodes (combined)	No	12 weeks from last access
Edison Scratch	\$SCRATCH	Lustre	10 TB / 5M inodes (none in /scratch3)	No	12 weeks from last access

Resources

http://www.nersc.gov/users/data-and-file-systems/

http://www.nersc.gov/users/data-and-filesystems/file-systems/

http://www.nersc.gov/users/computationalsystems/edison/file-storage-and-i-o/

http://www.nersc.gov/users/computationalsystems/hopper/file-storage-and-i-o/

HPSS: The NERSC Archive System

Archiving Data is Necessary

- Data growth is exponential and file system space is finite
 - 80% of stored data is never accessed after 90 days
 - Cost of storing infrequently accessed data on flash or spinning disk is prohibitive
 - Store important data in an archive to free faster resources for processing workload
 - Data from publications, unique experimental, or simulation data
- NERSC provides the HPSS archive system for data archiving

Cumulative Storage by Month and System

85 PB of data
Started in 1998, but oldest file is from the 70s

Features of the NERSC archive

- NERSC implements an online or "active archive"
 - High speed access over parallel connections to the NERSC internal 10Gb network
 - Data migrated automatically to enterprise tape system and managed by HSM software (HPSS) based on file age and usage
 - Indefinite data retention policy
- The archive is accessible to all NERSC users
- Often referred to as HPSS

HPSS is Heavily Used

Monthly I/O by Month and System

~100 TB / day

Number of Files Stored by Month and System

Accessing HPSS from NERSC Systems

HSI

- Fast, parallel transfers, unix-like interface
- Store from file system to archive:

```
-bash-3.2$ hsi
A:/home/n/nickb-> put myfile
put 'myfile' : '/home/n/nickb/myfile' ( 2097152 bytes, 31445.8 KBS (cos=4))
```

HTAR

- Parallel, puts tar file directly into HPSS, excellent for groups of small files
- Syntax: htar [options] <archive file> <local file | dir>
 -bash-3.2\$ htar -cvf /home/n/nickb/mydir.tar ./mydir

Accessing HPSS from Outside NERSC

- gridFTP: parallel, requires credential
- ftp: non-parallel, but common
- Globus: parallel, requires endpoint

HSI and HTAR precompiled binaries available for most systems

Tape IO Characteristics

- Ultimately all data in HPSS is written to tape
- Tape is linear media
 - Behaves differently than disk:
 - Data cannot be re-written in place, it is appended at the end
 - Reading and writing are sequential operations no random access
- Tape drives behave differently than disk drives
 - Take time to seek to file locations on tape
 - Take time to ramp up to full speed
 - Tape drives stop after reading or writing each file
- HPSS will not respond like a normal file system
 - Presents itself as one, but some things can have unexpected results

Size Matters

Sweet Spot

- Tape drives perform best when operating at full rate for long durations
- Large file are best for tape drive performance
- Many small files causes frequent stops and low-speed operations, can take a very long time to retrieve
- File bundles in the 100s of GB currently provide best performance

Group small files for optimal storage

 Use HTAR, GNU tar, or zip to bundle groups of small files together to optimize tape and network performance

There is such a thing as too big

Files spanning multiple tapes incur tape mount delays

Best Practices

- Group small files together and avoid excessive writes
 - Use htar or tar to group into ~100s of GB
- Bundle files in the same way that you will be retrieving them
 - By directory, by time, etc.
- Order your retrievals
 - Grab files from a tape in order of tape position
 - Grab all files from a tape while tape is mounted
- No exclusive access to the archive
 - No batch system
 - Inefficient use affects performance for everyone

Further Reading

- NERSC Website
 - Archive documentation:
 - http://www.nersc.gov/users/data-and-file-systems/hpss/getting-started/
 - Data management strategy and policies:
 - http://www.nersc.gov/users/data-and-file-systems/policies/
 - Accessing HPSS
 - http://www.nersc.gov/users/data-and-file-systems/hpss/getting-started/accessing-hpss/
- HSI and HTAR man pages are installed on NERSC compute platforms
- Gleicher Enterprises Online Documentation (HSI, HTAR)
 - <u>http://www.mgleicher.us/index.html/hsi/</u>
 - <u>http://www.mgleicher.us/index.html/htar/</u>
- "HSI Best Practices for NERSC Users," LBNL Report #LBNL-4745E
 - <u>http://www.nersc.gov/assets/pubs_presos/HSIBestPractices-Balthaser-Hazen-2011-06-09.pdf</u>

Asking Questions, Reporting Problems

Contact NERSC Consulting

- Toll-free 800-666-3772
- **–** 510-486-8611, #3
- Email <u>consult@nersc.gov</u>.
- https://www.nersc.gov/users/getting-help/

Thank you.

Data Sharing

Data Sharing

Ensure security

- Do not share passwords
- Do not share files from \$HOME

Project directories designed for sharing

Open to anyone in the repository

Use Unix group permissions

- Request creation of Unix group
- Set permissions with chgrp/chmod
 - Use setgid bit

give/take

- New, but based on old LLNL and LANL commands
- Appropriate for smaller files

joe% give -u bob coolfile

- File copied to spool location
- Bob gets email telling him Joe has given him a file

bob% take -u joe coolfile

- File copied from spool location
- Spooled files count against giver's GSCRATCH quota

Science Gateways on Project

Make data available to outside world

```
mkdir /project/projectdirs/bigsci/www
chmod o+x /project/projectdirs/bigsci
chmod o+rx /project/projectdirs/bigsci/www
```

Access with web browser

http://portal.nersc.gov/project/bigsci

Data Transfer

- Global file systems
 - Use local cp instead of remote scp
- Use scp for small-to-medium files over short-to-medium distance
 - Even better if HPN versions installed

```
% ssh -v
OpenSSH_5.1p1NMOD_2.9-hpn13v5, OpenSSL 0.9.8e-fips-rhel5 01 Jul
2008
```

- Use bbcp for larger files and/or longer distances
 - Many tuning options
 - Complicated command line

Globus

- Do-it-all web-based file transfer service
- High-performance
 - Parallel data channels (gridftp)
- Fire and forget model
- Also has a command-line interface for scripting

Further Reading

Sharing data

 https://www.nersc.gov/users/data-and-filesystems/sharing-data/

Transferring Data

 https://www.nersc.gov/users/data-and-filesystems/transferring-data/

Global Scratch Use

Shared across all systems

- Visible only by you by default
- Primary scratch file system for Carver

Tuned for large streaming file access

- Running IO intensive batch jobs
- Data analysis/visualization

Global Scratch Policies

Quotas enforced

- 20 TB
- 4,000,000 inodes
- Quota increases may be requested
- Monitor with myquota command

Temporary storage

- Bi-weekly purges of all files that have not been accessed in over 12 weeks
 - List of purged files in \$GSCRATCH/.purged.<timestamp>
- Hardware failures and human errors will happen

BACK UP YOUR FILES TO HPSS!

